De-Trending Time Series for Astronomical Variability Surveys

نویسندگان

  • Dae-Won Kim
  • Pavlos Protopapas
  • Charles Alcock
  • Yong-Ik Byun
چکیده

We present a de-trending algorithm for the removal of trends in time series. Trends in time series could be caused by various systematic and random noise sources such as cloud passages, changes of airmass, telescope vibration or CCD noise. Those trends undermine the intrinsic signals of stars and should be removed. We determine the trends from subsets of stars that are highly correlated among themselves. These subsets are selected based on a hierarchical tree clustering algorithm. A bottom-up merging algorithm based on the departure from normal distribution in the correlation is developed to identify subsets, which we call clusters. After identification of clusters, we determine a trend per cluster by weighted sum of normalized light-curves. We then use a quadratic programming to de-trend all individual light-curves based on these determined trends. Experimental results with synthetic light-curves containing artificial trends and events are presented. Results from other de-trending methods are also compared. The developed algorithm can be applied to time series for trend removal in both narrow and wide field astronomy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Variability in Massive Astronomical Time-Series Data I: application of an infinite Gaussian mixture model

We present a new framework to detect various types of variable objects within massive astronomical time-series data. Assuming that the dominant population of objects is non-variable, we find outliers from this population by using a non-parametric Bayesian clustering algorithm based on an infinite Gaussian Mixture Model (GMM) and the Dirichlet Process. The algorithm extracts information from a g...

متن کامل

A Sample of Astronomical Time Series

The observation of variability in astronomical systems provides astronomers with valuable information on the physical nature of the system. The types of variability which astronomers deal with can be periodic, quasi-periodic, or aperiodic. We collect and describe a number of time series data sets which exemplify the types of problems encountered by the modern astronomer and which demonstrate so...

متن کامل

Towards a Real-time Transient Classification Engine

Temporal sampling does more than add another axis to the vector of observables. Instead, under the recognition that how objects change (and move) in time speaks directly to the physics underlying astronomical phenomena, next-generation wide-field synoptic surveys are poised to revolutionize our understanding of just about anything that goes bump in the night (which is just about everything at s...

متن کامل

A Novel Fuzzy Based Method for Heart Rate Variability Prediction

Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...

متن کامل

Analyzing X-ray variability by Linear State Space Models

In recent years, autoregressive models have had a profound impact on the description of astronomical time series as the observation of a stochastic process. These methods have advantages compared with common Fourier techniques concerning their inherent stationarity and physical background. However, if autoregressive models are used, it has to be taken into account that real data always contain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009